Combinations of Optimization Method and Balancing Technique in Hypertension Classification with Machine Learning
Downloads
Hypertension is a condition in which blood vessels experience continuous pressure higher than normal limits which can cause pain and even death. Hypertension is classified into several classes based on the measured blood pressure. To correctly diagnose hypertension is a critical task that requires medical specialists who are unfortunately not evenly distributed in every region. This research aims to implement Particle Swarm Optimization for hyperparameter tuning in machine learning algorithms in hypertension disease classification. The approach was developed by comparing the performance of Random Forest (RF), Light Gradient Boosting Machine (LGBM), and Extra Trees (ET). Each algorithm was trained using its default hyperparameters, tuned with Grid Search and Cross-validation (GSCV), and the Particle Swarm Optimization with Cross-validation (PSO-CV). We consider recall to be the primary evaluation metric due to the imbalance in the dataset. The experiment results show that the combination of the LGBM and PSO-CV is the best combination of algorithm and hyperparameter optimization method with precision, recall, F1-score, ROC-AUC, and PR-AUC values of 0.22, 0.63, 0.33, 0.79, and 0.24, respectively. The results of this study prove that PSO might positively influence model performance, particularly in the case of unbalanced data.
Copyright (c) 2025 Natalia Intan Suryani Lu'o, Daniel Febrian Sengkey, Victor Florencia Ferdinand Joseph (Author)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlikel 4.0 International (CC BY-SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).





