Implementation of the Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP) Method to Address Class Imbalance in Alzheimer’s Disease Magnetic Resonance Imaging (MRI) Datasets
Downloads
Class imbalance in medical imaging datasets often leads to biased machine learning models, particularly in Alzheimer’s disease (AD) diagnosis using MRI. This study proposes the use of Wasserstein Generative Adversarial Networks with Gradient Penalty (WGAN-GP) to mitigate class imbalance in AD MRI datasets. Realistic MRI images were synthesized for underrepresented AD stages, and the quality of the generated data was quantitatively validatedusing the Fréchet Inception Distance (FID), with the lowest FID score recorded at 31.84, indicating a high degree of realism and diversity. The synthetic images were used to augment a dataset of 6,400 T1-weighted scans for training four Convolutional Neural Network (CNN) architectures: ResNet-50, AlexNet, VGG-16, and VGG-19. Results demonstrated statistically significant improvements in balanced accuracy across all models (p < 0.01 for all comparisons). The AlexNet + WGAN-GP combination achieved the highest accuracy of 98.54%, representing a mean improvement of 4.76% (95% CI: 2.45% to 6.98%) over its baseline. Significant gains were also observed for ResNet-50, VGG-16, and VGG-19. These enhancements were consistent across multiple evaluation metrics, including precision, recall, F1-score, and AUC. These findings confirm that WGAN-GP is a highly effective and statistically validated strategy for boosting the diagnostic accuracy of CNN models in Alzheimer's disease classification
Copyright (c) 2025 Muhammad Faiq Alamudin, Muhammad Itqan Mazdadi, Radityo Adi Nugroho, Triando Hamonangan Saragih, Muliadi Muliadi, Vijay Anant Athavale (Author)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlikel 4.0 International (CC BY-SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).





