EEG-Based Emotion Classification in Response to Humorous, Sad, and Fearful Video Stimuli Using LSTM Networks: A Comparative Study with Classical Machine Learning Models
Downloads
Emotion recognition based on EEG signals is a critical area within affective computing, with applications in mental health monitoring, human-computer interaction, and neuroadaptive systems. However, accurately classifying emotional states from inherently non-stationary and noisy EEG data remains a major challenge. This study explores the classification of three discrete emotions, Humorous, Sad, and Fearful, elicited through video stimuli, using EEG recordings from six participants acquired via a 19-channel Mitsar amplifier at a 500 Hz sampling rate. Preprocessing steps included bandpass filtering (1–40 Hz), epoch segmentation, and multi-domain feature extraction encompassing statistical measures, spectral features, differential entropy, Hjorth parameters, and hemispheric asymmetry indicators. Data augmentation was applied to balance class distributions, particularly for the underrepresented fear category. The resulting features were normalized and structured to support temporal deep learning and classical machine learning models. The classification performance of Long Short-Term Memory (LSTM) networks was evaluated alongside Support Vector Machine (SVM), k-Nearest Neighbors (k-NN), and Random Forest (RF) classifiers. While LSTM demonstrated competency in capturing temporal dependencies, especially in fear recognition, SVM achieved the highest overall accuracy, 94.12%, outperforming LSTM at 85.16%, RF at 90.00%, and k-NN at 78.01%. These results suggest that when robust and discriminative features are employed, traditional models like SVM can surpass deep learning methods, particularly in small-scale EEG datasets with limited temporal complexity. This study underscores the importance of aligning model architecture with feature representation and contributes a comparative evaluation framework for EEG-based emotion recognition systems.
Copyright (c) 2025 Muhamad Agung Suhendra, Tedi Sumardi, Iqbal Robiyana (Author)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlikel 4.0 International (CC BY-SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).





